Quantitative Nano-Mechanical/Nano-Electrical Properties Measurement

Wanxin SUN, Bruker Nano-Surface (wanxin.sun@bruker.com)
Outline

- Quantitative Nano-mechanical Measurement
 - Modulus measurement
 - Molecular recognition

- Force Volume
 - Mechanical mapping mode

- Contact Resonance AFM
 - Elasticity and Viscoelasticity Characterization

- KPFM Development
 - PF and FM make KPFM more sensitive
PeakForce Tapping

1 nN

Trajectory of the tip

van der Waals

approaching

withdraw

Peak tapping force

Peak tapping force <100pN

Time

Z position

TESP (42 N/m) on Si, MM8
High Resolution Easily Achieved due Superior Force Control

- Topography down to atomic resolution!
- Resolving single atomic and molecular defects

Enabled by PeakForce Tapping™
Oxygen Atoms of Calcite Dissolution Crystal Plane

- Dissolution plane interface shows expected offset in crystal planes.
Simultaneously obtain quantitative data:
- Topography
- DMT Modulus ~1MPa – 100GPa
- Adhesion
- Energy Dissipation
- Deformation

\[F_{\text{tip}} = \frac{4}{3} E^* \sqrt{Rd^3} + F_{\text{adh}} \]
Multiple probes allow wide range of property measurement

New models: more precise representation of tip shape, adhesion

New properties: Wider range of ramp size and frequency, study deformation at different rates

Expanded PeakForce QNM Capabilities

Softer samples & wider range of frequency
Sneddon model works well over the biologically relevant kPa-MPa range.

Agarose gels measured with PeakForce QNM (Sneddon model, MLCT-E probe)
Mechanical Mapping of Single Membrane Proteins (bacteriorhodopsin) at Submolecular Resolution

• Flexibility of individual membrane proteins determines their ability to undergo conformation changes

• α-helices are stiff structures contributing to the mechanical stability of membrane proteins, while iterhelical loops appearing more flexible to allow conformational changes

Rico et al, Nano Letter, 2011
PeakForce QNM for Live Cell Imaging
High Resolution Mechano-Biology with BioScope Resolve

- PeakForce QNM property mapping of live cells provides:
 - Fast acquisition of high-resolution mechanical property maps (up to 1kHz in fluid)
 - Quantitative and highly repeatable modulus/adhesion measurements

- Achieved Through:
 - Unique instrument design including very stable sample clamping
 - Bruker PeakForce QNM Live cell probe (17µm tip, k ~0.08N/m)

PeakForce QNM topography image (left) and corresponding modulus image (right) of living MDCK cells. Cell structures corresponding to actin fibers show higher modulus (lighter) while cell surface features, believed to be microvilli, appear softer (darker) than the cell membrane itself.
• Heat sealed bag: Barrier and Tie layers are incompatible, so we expect a relatively abrupt interphase.
 • Single scan line has a clear step in modulus over a distance of ~75nm.
 • Lamella do not cross the interface, but grow epitaxially from the Barrier layer – can see in averaged profile.
 • Lamella are highly ordered and perpendicular to interface ~250nm into the Tie layer.
Tie and Sealant layers are relatively compatible = wider interphase.

- Single scan line: the variation in modulus is dominated by individual lamella.
- Collectively: modulus varies over a much wider range ~250nm to ~1um.
- Lamella from Tie layer act as nucleation sites or penetrate into the Sealant: more ordered region to ~1um from the interface.

Barrier layer
- Nylon
 - Strength & gas impermeability

Tie layer
- ULDPE
 - Preserves layer adhesion

Sealant layer
- Metallocene PE/LDPE blend
 - Adheres to itself when heated
Variation in viscoelastic response visible in Dissipation map

- Dissipation in Barrier<Tie
 - Demonstrated both by images and simultaneous force curves extracted from HSDC
- Hysteresis in contact part of force curves suggests an inelastic deformation mechanism is active
PeakForce QNM and Force Volume
Mechanical Property Mapping Modes

PeakForce Tapping (PF-QNM)

- Sinusoidal ramping (not linear): no piezo resonance, no overshoot
- Real feedback loop force control: benefits from prior curves
- Fast ramping (~kHz): faster images, even with more pixels

Force Volume (FV)

- Linear ramping: abrupt turn-around at high speed -> ringing, overshoot
- Discrete force triggers at each ramp: attempts to turn around at trigger. At high speeds, it can’t reverse fast enough, so it overshoots.
- Ramping rate is limited (~.1kHz)
Expanded Frequency Ranges

Easy comparison of Force Volume & PeakForce QNM with expanded frequency ranges (Nanoscope v9.20)

- Closed the gap in frequency between Force Volume and PeakForce QNM
 - PeakForce QNM minimum frequency now 125Hz; FV max at 300Hz
- Improves productivity and makes high-resolution FV maps practical
- Allows investigation of time dependent material property maps
Introduction to Contact Resonance AFM

- **Benefits**
 - Better sensitivity for stiff samples (10-500GPa)
 - Provides storage & loss modulus
 - But only at discrete (high) frequencies

- **Method**
 - Excite sample (AFAM) mechanically at contact resonance freq
 - Measure fcr, Qcr (don’t need to calibrate amplitude!)

- **Challenges:**
 - Preserving the tip (repeatability)
 - Modeling the cantilever dynamics (fcr -> k*)
 - Modeling the contact mechanics (k* -> E*)
 - Calibrating all of the parameters (accuracy)
Elasticity and Viscoelasticity Characterization
Accurate Measurements of Materials 1kPa to 300+ GPa

Complete Solution for Nanomechanical Characterization

Contact Resonance
PF-QNM Performance

Elasticity

Cell Biology
Polymer Materials
Composite Metal

Viscoelasticity

Cell Biology
Polymer Materials
Composite Metal

10^3 (kPa) 10^6 (MPa) 10^9 (GPa) 10^{12} (TPa)

Academic/Government
Industrial Materials

11-Sep-17
Contact Resonance Probes and Samples

- Probes and reference samples
 - 3-probes types diamond coated with various spring constant cover modulus range from 1 GPa to 300+ GPa.
 - 7-reference samples including HOPG, Mica, Fused Silica, Al (50nm film), Si, Cr (50nm film), and Sapphire.
 - Note: During development engineering used 6 probes collected over 2.7 million CR curves and lasted 257 hours of CR operation.
Explaining Contact Resonance
From Frequency and Deflection to modulus

1. Measure frequency (fcr) & Deflection
2. Apply cantilever dynamics to calculate k*/kc from fcr/f0
3. Convert Deflection to Force using deflection sensitivity & spring constant (kc)
4. Apply Contact Mechanics to calculate E* from Radius (R), Force (F) and contact stiffness (k*)

$$E^* = \sqrt{\frac{k^*^3}{6RF}}$$
Contact Resonance Mapping
Al Film on Si
Force Volume Image 10um 256x256 Force Curves

- FastForceVolume “Big Data” every force curve, 4-channels
- High resolution FV mapping
 - (256x256)x2048
 - Max pixels now (956x956)x256
- FV Mapping with more than 15 data types: Frequency, Amplitude, Q, Modulus, R²
Contact Resonance Mapping
Al Film on Si
Force Volume Image 10um 256x256 Force Curves

- Exceptional Sensitivity
- Exceptional Repeatability
- Bruker Diamond coated Probes
- Dimension Platform for efficiency in measurements

Al area: F=889.3 ±20kHz (2.2%)
Si area: F=933.5 ±7.4kHz (0.79%)

Frequency
2.0 μm

Al (1000 curves)
Si (1000 curves)
Precise Force Control
Enables Measurement Optimization

- **Load=200nN**
 - Frequency: $F = 812.4 \pm 3.4\text{kHz}$

- **Load=1\mu N**
 - Frequency: $F = 853.4 \pm 0.63\text{kHz}$

- **Load=3\mu N**
 - Frequency: $F = 888.3 \pm 0.63\text{kHz}$

- **Load=5\mu N**
 - Frequency: $F = 909.7 \pm 0.95\text{kHz}$

- **Load=7\mu N**
 - Frequency: $F = 934.3 \pm 5.0\text{kHz}$
Loss Modulus Accuracy and loss tangent...

- Loss modulus can be calculated from the Q of the CR peak
- Research community lacks consensus about the best way to do this, so we implemented three algorithms
 - YHT 2008 and Rabe 2006 are very similar and both require the reference sample to have a known loss modulus
 - PKAS 2016 does not require a reference sample with known loss modulus

- Accuracy of Loss Modulus and Loss Tangent is viewed with skepticism, yet lots of traction in materials research.
 - Our competition is just using the YHT model, we are providing more flexibility...

\[
\tan \delta = \frac{E''}{E'}
\]
Bruker Contact Resonance Key Features
Nanomechanics Expansion

• More repeatable: lateral force on tip is minimized, reducing tip wear
 • New diamond coated probes further stabilize the measurement
 • Stage allows automatic re-checking of reference sample

• More information: whole force curve is collected at every pixel, including Adhesion force
 • Allows better contact mechanics modeling
 • Comparison with Force Distance data

• Real-time maps of both raw data and mechanical props
 • f, Q, A, k*/k, E’, E”, loss tangent, etc.

• Whole sweep is saved, allowing detection of artifact peaks, etc. (unlike freq tracking methods like DART)
Ramp Rate = 122 Hz
Average = 613.58 kHz
Std Dev = 1.62 kHz

- 1 µm Scan
- 16x16 points
- Adhesion = 32.4 nN
- Rq = 1.8 nN
Ramp&Hold Z or Force
Stress or Strain Relaxation

- Hold Z, hold trigger force, or hold user defined force
- Integrated with Force Volume
- Easy: similar to ramp mode
 - Typical ramp time~0.1-10sec
 - Typical Hold time ~1-5000sec.
 - User definable sample rates
- For Ramp&Hold > a few sec, the plot is updated during acquisition and can be cancelled
- Offline analysis
RampScript Editor

- Multi-segment types and control in a single script.
- Force Ramps and Frequency Sweeps.
The Biological Question:
Can we map the distribution of cytoadherent molecules to specific cell surface structures?

- AFM probes were functionalized with endothelial surface receptor CD36.
- Used PeakForce QNM with functionalized probe to obtain 2D map of the distribution of CD36 molecular binding sites on IE.

Adapted from Li et al. (2011) PLoS ONE 6: 1-10.
Molecular Recognition Mapping with PeakForce QNM and Functionalized Probes

- Malaria infected red blood cells were imaged with probes functionalized with endothelial surface receptor protein CD36, which is implicated in the adhesion of infected blood cells to blood vessels and the resulting blockage of those vessels.
- Infection results in the appearance of knob-like bumps on the blood cell surfaces
- Many of these knobs are shown to be CD36 binding sites (e.g. yellow circle)
- Recognition is not an artifact of topography though, as some knobs show no adhesion (green arrow)

Li et al. 2010 Proceedings of the World Congress on Biomechanics
KPFM: work function measurement

KPFM measures the work function difference of tip/sample.

<table>
<thead>
<tr>
<th>AM</th>
<th>Amplitude-Modulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FM</th>
<th>Frequency-Modulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✓ Better spatial resolution</td>
</tr>
<tr>
<td></td>
<td>✓ Better accuracy</td>
</tr>
</tbody>
</table>

Physical Review B 2005, 71(12) 125424
Probe Modeling and Assumptions
Electrostatic Forces are Long Range - cantilever geometry matters

The probe body-cone and lever-is an equal potential body.

Charges are only present on the surface (holds for any good conductor).

The conical body surface is a stack-up of rings, each ring contributes to the total electric field in proportion to their capacitance (assumption).
Tip Cone Contribution in KPFM

FM gradient detection isolates contribution from tip

- **FM-KPFM:**
 - The foremost 0.3% of the tip cone accounts for half of the signal in.
 - FM can achieve a lateral resolution better than 50 nm.

- **AM-KPFM**
 - The contribution from the tip cone never reaches 50%.
 - Its lateral resolution is dictated by the um-scale lever.

Graph:
- **Height Inclusion (h/H)%**
- **Cone Contribution%**

Based on SCM-PIT Geometry:
- W=30um, L=225um, H=10um, Cone Angle=45
PeakForce KPFM Retains FM-KPFM’s High Resolution
PeakForce KPFM vs FM-AM
FM detection advantage maintained

Sn$_{60}$Pb$_{40}$ Alloy
FM sees larger and more localized contrast leading to better accuracy.
AM contrast smaller and more convoluted.
Work functions: Sn 4.42 eV; Pb 4.25 eV
PeakForce KPFM Repeatability
5x improvement over traditional KPFM

<table>
<thead>
<tr>
<th></th>
<th>Average</th>
<th>Std Dev</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au-Al</td>
<td>0.825</td>
<td>0.019</td>
<td>0.847</td>
<td>0.796</td>
</tr>
<tr>
<td>Au</td>
<td>0.639</td>
<td>0.018</td>
<td>0.617</td>
<td>0.670</td>
</tr>
<tr>
<td>Al</td>
<td>-0.185</td>
<td>0.020</td>
<td>-0.159</td>
<td>-0.222</td>
</tr>
</tbody>
</table>

9 KPFM Probes
Organic Photovoltaic Applications:
PCBM Crystals on MDMO-PCBM Matrix

Particles are PCBM crystals on matrix of MDMO-PCBM blend, ITO substrate. Sample courtesy of Dr. Philippe Leclere, University of Mons

Work function downshifts 535 mV under 300-sun illumination.
Scaling Topography and Potential

\[KPFM \text{ Sensitivity} \propto \frac{Q}{k} \]

- But Tapping Mode Requires:
 - \(k \) to be not too small
 - \(Q \) not to be too big

 Tapping and KPFM scaling in conflict.

- Peak Force Tapping Mode Allows Freedom to use:
 - Smaller \(k \) (10x or more)
 - Big \(Q \) (10x or more)

 PeakForce Tapping and KPFM scaling aligned.
Multi-Dimensional Information Obtained

- Mechanical property mapping is natural for AFM (PeakForce QNM®)
- Extensions to electrical properties are straightforward
- Correlated measurements with PFTUNA, PFKPFM

3 um scan of a thermoplastic vulcanizate comprised of Polypropylene, modified rubber, and carbon black particles